# Curriculum



## Day 1 Foundations and Core Concepts

Module 1: Introduction to Edge Computing

- Overview of edge computing concepts
- Differences between edge, fog, and cloud computing
- Importance of edge computing in modern applications

Module 2: Basics of Deep Learning

- Introduction to deep learning: concepts and techniques
- Overview of neural networks and their applications
- Role of deep learning in edge computing

Module 3: Edge Computing Architecture and Platforms

- Key components of edge computing: devices, gateways, and servers
- Edge computing platforms and tools: AWS Greengrass, Azure IoT Edge
- Data processing and analytics at the edge

LEARNING OUTCOME

#### The key learnings for Day 1 are:

- 1. Core concepts and importance of edge computing.
- 2. Differences between edge, fog, and cloud computing.
- 3. Basics of deep learning and its role in edge computing.
- 4. Key components and architecture of edge computing.
- 5. Introduction to edge computing platforms and tools.

## Day 2

**Advanced Techniques and Practical Implementation** 

Module 4: Hands-on Deep Learning with U-Net Based Architecture

- Introduction to U-Net architecture for image segmentation
- Building and training a U-Net model
- Deploying U-Net on edge devices for real-time processing

Module 5: Transfer Learning

- Understanding transfer learning and its importance
- Applying transfer learning techniques in edge computing scenarios
- Fine-tuning pre-trained models for specific edge applications

Module 6: Model Pruning for Edge Computing

- Introduction to model pruning and its benefits
- Techniques for pruning deep learning models
- Implementing model pruning to optimize edge deployments

**Conclusion and Project Work** 

- Recap of key learnings
- Hands-on project: Integrating deep learning models with edge computing

LEARNING OUTCOME

• Q&A and final discussion on future trends in edge computing

By the end of Day 2, participants will be able to:

- 1. Define spectral signatures and their importance in remote sensing.
- 2. Analyze spectral reflectance curves for material identification.
- 3. Apply practical techniques for identifying materials using spectral signatures.
- 4. Implement advanced image processing methods for data enhancement.

5. Utilize feature extraction and classification techniques for land cover analysis using spectral data.



### ENROLL NOW

Got any more questions? Feel free to contact us on hexstaruniverse@gmail.com or call us on +91 8910123832